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Directions of our lab

METHODOLOGY DEVELOPMENT FOR

« Single cell technology
Novel cell detection, longitudinal design, population-scale analysis
« Spatial omics data analysis
Cell type mediation analysis, cell annotation
« TCR-seq data analysis
Longitudinal design, sequence interpretation
* Problems in clinical data analysis
Risk estimation and prediction

COLLABORATIVE RESEARCH
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Single cell technology

« Most of the biological experiments are performed on “bulk” samples,
which contain a large number of cells (millions).
« The “bulk” data measure the average signals (gene expression, TF

binding, methylation, etc.) of many cells.
* The bulk measurement ignores the inter-cellular heterogeneities:

» Different cell types.
« Variation among the same cell type.
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Single cell technology

Single-cell biology: the study of individual cells.

The cells are isolated from multi-cellular organism. Experiment is
performed for each cell individually.

Provides more detailed, higher resolution information. High-
throughput experiments on single cell is possible.

Different types of sequencing: DNA-seq, ATAC-seq, BS-seq, RNA-
seq, multi-omics
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Single Cell RNA Sequencing Workflow
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Single cell RNA-seq (scRNA-seq)

* The most active in the single cell field.

* Scientific goals:

« Composition of different cell types in complex tissues.

* New/rare cell type discovery.

» Gene expression, alternative splicing, allele-specific expression at the level of individual
cells.

» Transcriptional dynamics (pseudotime construction).

» Above can be investigated and compared spatially, temporally, or under different
biological conditions.

* Technology:
* Plate-based methods (Smart-seq, Smart-seq2, CEL-seq)
* Droplet-based methods (Drop-seq, inDrop, 10x genomics)
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lllustration of Drop-let based technology
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scRNA-seq data after processing

A matrix of read counts: rows are genes and columns are cells
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Standard scRNA-seq data analysis pipeline
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Challenges in identifying novel cells when annotating scRNA-
seq data

1. Cell type annotation: one of the most important steps in scRNA-seq analysis

2. Traditional way of annotating cells: apply unsupervised clustering and label cell
types based on the cluster-specific markers (Still widely used)

3. Supervised cell annotation methods have been developed to quickly and
reproducibly assign cell labels. A comparison paper: Abdelaal et al. (2019, GB)

Pre-train a classifier using scRNA-seq training data with generic machine learning methods: SVM, LDA,
RF, kNN, RF

Scmap (Nature methods, 2018)

CHETAH (NAR, 2019)

singleR (Nat Immunol, 2019)
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Challenges in identifying novel cells when annotating scRNA-

Language Underlying classifier

seq d ata Name Version Prior knowledge Rejection option Reference
Garnett 0.14 R Generalized linear model Yes Yes [14]
Moana 0.1.1 Python SVM with linear kernel Yes No [15]
DigitalCellSorter GitHub version: e369a34 Python Voting based on cell type markers Yes No [16]
SCINA 1.1.0 R Bimodal distribution fitting for marker genes Yes No n7
scVl 03.0 Python Neural network No No 8]
Cell-BLAST 012 Python Cell-to-cell similarity No Yes [19]
ACTINN GitHub version: 563bcc1  Python Neural network No No [20]
LAmMbDA GitHub version: 3891d72  Python Random forest No No [21]
scmapcluster 15.1 R Nearest median classifier No Yes [22]
scmapcell 1.5.1 R kNN No Yes [22]
scPred 0.0.0.9000 R SVM with radial kernel No Yes [23]
CHETAH 0.99.5 R Correlation to training set No Yes [24]
CaSTLe GitHub version: 258b278 R Random forest No No [25]
SingleR 022 R Correlation to training set No No [26]
sciD 0.0.0.9000 R LDA No Yes 271
singleCellNet 0.1.0 R Random forest No No [28]
LDA 0.19.2 Python LDA No No [29]
NMC 0.19.2 Python NMC No No [29]
RF 0.19.2 Python RF (50 trees) No No [29]
SYM 0.19.2 Python SVM (linear kernel) No No [29]
SVM(gjection 0.19.2 Python SVM (linear kernel) No Yes [29]
kNN 0.19.2 Python kNN (k=9) No No [29]
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Challenges in identifying novel cells when annotating scRNA-
seq data

1. Most of the conventional machine learning classification methods can only
identify cell types that exist in the training data.

2. Existing methods generally rely on naive approaches to identify novel cells:
« Set a cutoff for correlation coefficients in scmap (default cutoff: 0.7)
» Set a cutoff for confidence score of assignment in CHETAH (pc_thres = 0.2)
« Set a cutoff for assigning probability in scPred (default value = 0.55)

3. Resulting in an excess number of unassigned cells (novel + uncertain cells)
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Challenges in identifying novel cells when annotating scRNA-
seq data

—

Neoplastic cells commonly exist in scRNA-seq data from cancer patients
One unique analytical challenge is distinguishing neoplastic cells (e.g., tumor
cells) from nonneoplastic cells (e.g., immune cells, endothelial cells, and
fibroblasts)

3. Cell sorting can be used as an experimental approach
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Challenges in identifying novel cells when annotating scRNA-

seq data

1. Computational methods have been developed to identify cells with extensive

copy number variations
* InferCNV (Science, 2014)
 HoneyBadger (Genome Research, 2018)
«  CopyKAT (Nature Biotechnology, 2021)
2. These methods only works well when neoplastic cells have extensive copy

number variations, but do not work when cells have small regions of
aberrations or are diploid e e
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Our proposal: a machine learning based method that does not
rely on copy number variations

Training data
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Our proposal: a machine learning based method that does not
rely on copy number variations

Algorithm 1: Iterative feature selection procedure

Data: REtest and SSEtest
Result: Ciest
Initialize Céggt by K-means clustering of SSEest, K = 2;

Initialize t = 1;
while Convergence criterion do not meet do

Perform genewise t test using colttest() function using
RFE¢est with two groups defined in Ct(és_tl) ;
Identify the top 500 significant genes based on the testing p

values;

Update C’t(?gt by hierarchical clustering using the selected 500
fcatmes, K =2

end
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Designs of numeric experiments

Three numerical experiments:

» Peripheral blood mononuclear cells (PBMC, more than 60,000 sorted single cells),
monocytes as the novel cell type

» Draw training and testing data from the PBMC dataset excluding monocytes (n =
2400, 3100, 3800), add 300 monocytes in the test data

» Peripheral blood mononuclear cells (PBMC, more than 60,000 sorted single cells)
+ head and neck cancer cell line (HNCC, 4632 cells)

« Draw training and testing data from the PBMC dataset (n = 2400, 3100, 3800), add
300 cancer cells in the test data

 Pancreas data (GSE85241, 2126 cells), mesenchymal cells as the novel cell type
(80 cells)

Comparing methods: CHETAH, scmap-cell, scmap-cluster, scPred, coypKAT (if cancer

cells are involved)
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Numerical study with PBMC data
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Numerical experiments with PBMC and cancer cell line data
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method

Numerical study with Pancreas data
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Application in two cancer datasets

scRNA-seq data with five triple-negative breast cancer (TNBC)
patients

scRNA-seq data with five anaplastic thyroid cancer (ATC) patients
Both from Gao et al. (2021) and GSE148673

Outside reference data for TNBC experiment: a scRNA-seq study
with 26 primary tumors of three major breast cancer subtypes. The
data from 10 TNBC patients were obtained as the reference.

Wu et al. (2021) and GSE176078

22
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Application in two cancer datasets
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Application in two cancer datasets
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Application in two cancer datasets
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Analysis of TNBC data with external reference data
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Unsolved challenges

27

« The proposed method may not work well when the novel cells are very similar to
the known cells

It is unclear if the method still works well if significant batch/subject effect exist
in the data

Will incorporating multiple reference panels improve classification accuracy?

1,673 of 387 of 792 of
¥ 4.438cells ¥ 4,438 cells ¥ 4,438 cells

Figure source: van Galen, Peter, et al. "Single-cell RNA-seq reveals AML hierarchies relevant to disease progression and immunity." Cell 176.6 (2019): 1265-1281.
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Unsolved challenges
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Ongoing/future works

« Better identify neoplastic cells in certain cancer types by
incorporating additional biological knowledge

* Including domain specific markers or pathway information to improve
novel cell identification

« Explore this direction in larger population scale studies

29
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https://ziyili20.github.io

Thank you!
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