Ziyi lab on Statistical Genomics at MDA

MDAnderson Cancer Center

Making Cancer History®

Ziyi Li

Department of Biostatistics The University of Texas MD Anderson Cancer Center zli16@mdanderson.org

Directions of our lab

METHODOLOGY DEVELOPMENT FOR

• Single cell technology

Novel cell detection, longitudinal design, population-scale analysis

• Spatial omics data analysis

Cell type mediation analysis, cell annotation

• TCR-seq data analysis

Longitudinal design, sequence interpretation

• Problems in clinical data analysis

Risk estimation and prediction

COLLABORATIVE RESEARCH

Single cell technology

- Most of the biological experiments are performed on "bulk" samples, which contain a large number of cells (millions).
- The "bulk" data measure the average signals (gene expression, TF binding, methylation, etc.) of many cells.
- The bulk measurement ignores the inter-cellular heterogeneities:
 - Different cell types.
 - Variation among the same cell type.

Single cell technology

- Single-cell biology: the study of individual cells.
- The cells are isolated from multi-cellular organism. Experiment is performed for each cell individually.
- Provides more detailed, higher resolution information. Highthroughput experiments on single cell is possible.
- Different types of sequencing: DNA-seq, ATAC-seq, BS-seq, RNAseq, multi-omics

Single Cell RNA Sequencing Workflow

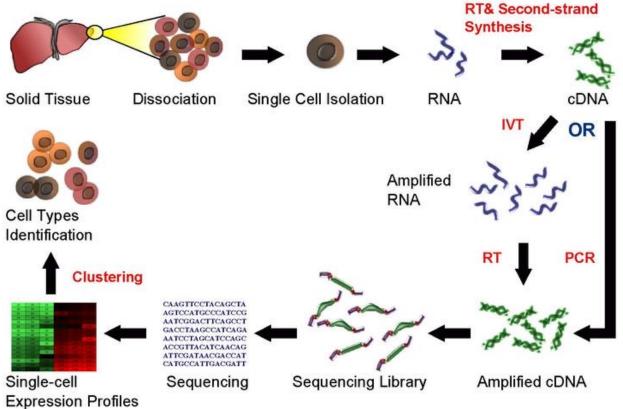


Figure source: wikipedia

Single cell RNA-seq (scRNA-seq)

- The most active in the single cell field.
- Scientific goals:
 - Composition of different cell types in complex tissues.
 - New/rare cell type discovery.
 - Gene expression, alternative splicing, allele-specific expression at the level of individual cells.
 - Transcriptional dynamics (pseudotime construction).
 - Above can be investigated and compared spatially, temporally, or under different biological conditions.

• Technology:

- Plate-based methods (Smart-seq, Smart-seq2, CEL-seq)
- Droplet-based methods (Drop-seq, inDrop, 10x genomics)

MD Anderson | Ziyi lab on Statistical Genomics at MDA

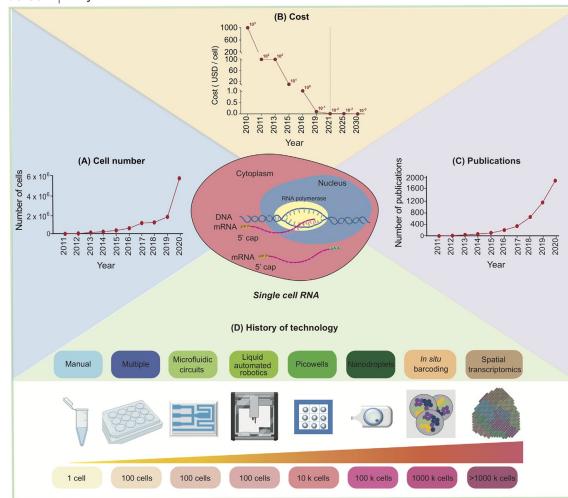


Figure source: Jovic, Dragomirka, et al. "Single-cell RNA sequencing technologies and applications: A brief overview." *Clinical and Translational Medicine* 12.3 (2022): e694.

Illustration of Drop-let based technology

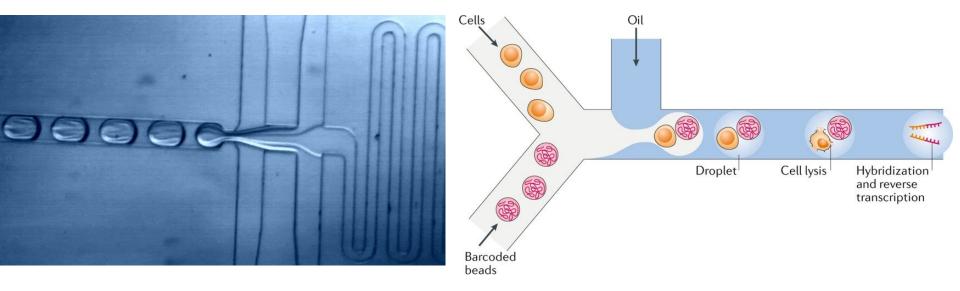


Figure source: Macosko et al. 2015, Potter SS. 2018

scRNA-seq data after processing

A matrix of read counts: rows are genes and columns are cells

	AACGGTACCTTCGC_1	AGAGAAACGCCCTT_1	AGGCAGGACGAATC_1
ENSG00000228463	0	0	0
ENSG00000230021	0	0	0
ENSG00000237491	0	0	0
ENSG00000177757	0	0	0
ENSG00000225880	0	0	0
	ATACCTTGCCGATA_1	ATAGGCTGGCTTCC_1	
ENSG00000228463	0	0	
ENSG00000230021	0	0	
ENSG00000237491	0	0	
ENSG00000177757	0	0	
ENSG00000225880	0	0	

Standard scRNA-seq data analysis pipeline

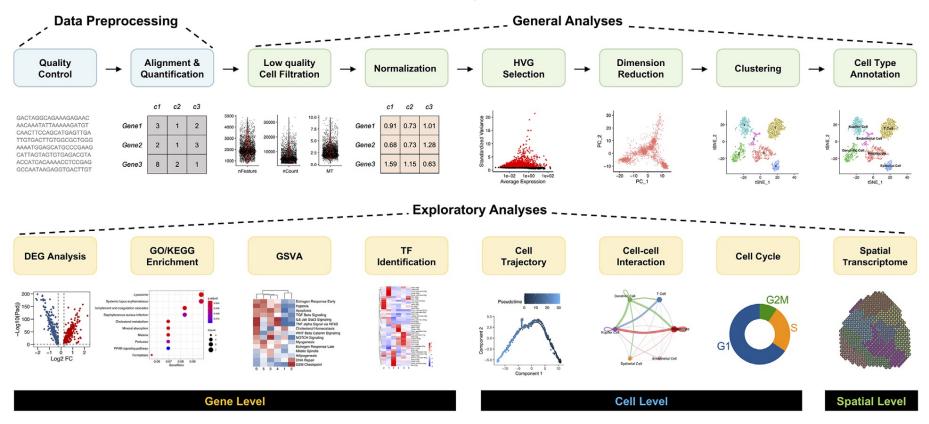


Figure source: Jovic, Dragomirka, et al. "Single-cell RNA sequencing technologies and applications: A brief overview." Clinical and Translational Medicine 12.3 (2022): e694.

- 1. Cell type annotation: one of the most important steps in scRNA-seq analysis
- 2. Traditional way of annotating cells: apply unsupervised clustering and label cell types based on the cluster-specific markers (Still widely used)
- 3. Supervised cell annotation methods have been developed to quickly and reproducibly assign cell labels. A comparison paper: Abdelaal et al. (2019, GB)

Pre-train a classifier using scRNA-seq training data with generic machine learning methods: SVM, LDA, RF, kNN, RF

- Scmap (Nature methods, 2018)
- CHETAH (NAR, 2019)
- singleR (Nat Immunol, 2019)

seg data	Name	Version	Language	Underlying classifier	Prior knowledge	Rejection option	Reference
ooq aata	Garnett	0.1.4	R	Generalized linear model	Yes	Yes	[14]
	Moana	0.1.1	Python	SVM with linear kernel	Yes	No	[15]
	DigitalCellSorter	GitHub version: e369a34	Python	Voting based on cell type markers	Yes	No	[16]
	SCINA	1.1.0	R	Bimodal distribution fitting for marker genes	Yes	No	[17]
	scVI	0.3.0	Python	Neural network	No	No	[18]
	Cell-BLAST	0.1.2	Python	Cell-to-cell similarity	No	Yes	[19]
	ACTINN	GitHub version: 563bcc1	Python	Neural network	No	No	[20]
	LAmbDA	GitHub version: 3891d72	Python	Random forest	No	No	[21]
	scmapcluster	1.5.1	R	Nearest median classifier	No	Yes	[22]
	scmapcell	1.5.1	R	kNN	No	Yes	[22]
	scPred	0.0.0.9000	R	SVM with radial kernel	No	Yes	[23]
	CHETAH	0.99.5	R	Correlation to training set	No	Yes	[24]
	CaSTLe	GitHub version: 258b278	R	Random forest	No	No	[25]
	SingleR	0.2.2	R	Correlation to training set	No	No	[26]
	scID	0.0.0.9000	R	LDA	No	Yes	[27]
	singleCellNet	0.1.0	R	Random forest	No	No	[28]
	LDA	0.19.2	Python	LDA	No	No	[29]
	NMC	0.19.2	Python	NMC	No	No	[29]
	RF	0.19.2	Python	RF (50 trees)	No	No	[29]
	SVM	0.19.2	Python	SVM (linear kernel)	No	No	[29]
	SVM _{rejection}	0.19.2	Python	SVM (linear kernel)	No	Yes	[29]
	kNN	0.19.2	Python	kNN (<i>k</i> = 9)	No	No	[29]

- 1. Most of the conventional machine learning classification methods can only identify cell types that exist in the training data.
- 2. Existing methods generally rely on naïve approaches to identify novel cells:
 - Set a cutoff for correlation coefficients in scmap (default cutoff: 0.7)
 - Set a cutoff for confidence score of assignment in CHETAH (pc_thres = 0.2)
 - Set a cutoff for assigning probability in scPred (default value = 0.55)
- 3. Resulting in an excess number of unassigned cells (novel + uncertain cells)

- 1. Neoplastic cells commonly exist in scRNA-seq data from cancer patients
- 2. One unique analytical challenge is distinguishing neoplastic cells (e.g., tumor cells) from nonneoplastic cells (e.g., immune cells, endothelial cells, and fibroblasts)
- 3. Cell sorting can be used as an experimental approach

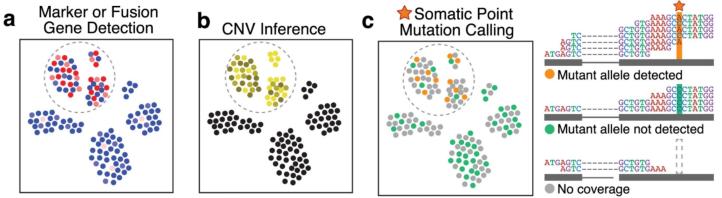
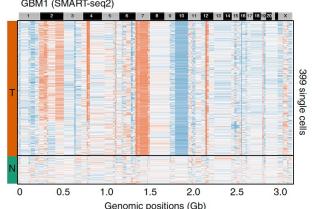
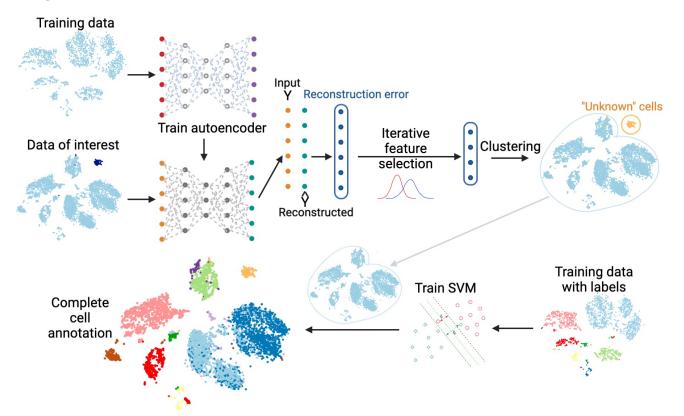


Figure source: Fan, et al. Experimental & Molecular Medicine 52.9 (2020): 1452-1465.

- 1. Computational methods have been developed to identify cells with extensive copy number variations
 - InferCNV (Science, 2014)
 - HoneyBadger (Genome Research, 2018)
 - CopyKAT (Nature Biotechnology, 2021)
- 2. These methods only works well when neoplastic cells have extensive copy number variations, but do not work when cells have small regions of aberrations or are diploid



Our proposal: a machine learning based method that does not rely on copy number variations



Our proposal: a machine learning based method that does not rely on copy number variations

Algorithm 1: Iterative feature selection procedure

Data: RE_{test} and SSE_{test}

Result: C_{test} Initialize $C_{test}^{(0)}$ by K-means clustering of SSE_{test} , K = 2; Initialize t = 1;

while Convergence criterion do not meet do

Perform genewise t test using *colttest()* function using

 RE_{test} with two groups defined in $C_{test}^{(t-1)}$;

Identify the top 500 significant genes based on the testing p values:

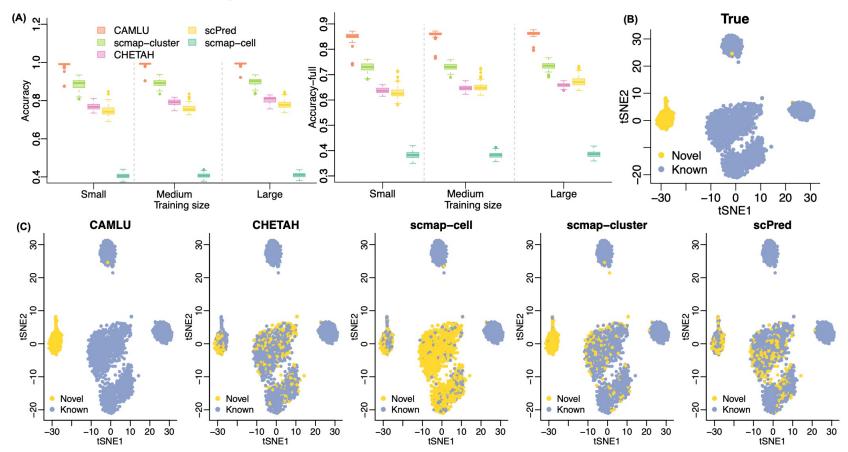
Update $C_{test}^{(t)}$ by hierarchical clustering using the selected 500 features, K = 2;

end

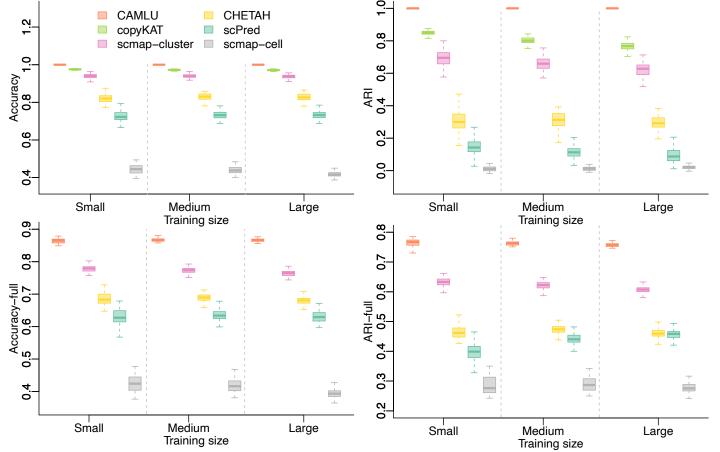
Designs of numeric experiments

- Three numerical experiments:
 - Peripheral blood mononuclear cells (PBMC, more than 60,000 sorted single cells), monocytes as the novel cell type
 - Draw training and testing data from the PBMC dataset excluding monocytes (n = 2400, 3100, 3800), add 300 monocytes in the test data
 - Peripheral blood mononuclear cells (PBMC, more than 60,000 sorted single cells)
 + head and neck cancer cell line (HNCC, 4632 cells)
 - Draw training and testing data from the PBMC dataset (n = 2400, 3100, 3800), add 300 cancer cells in the test data
 - Pancreas data (GSE85241, 2126 cells), mesenchymal cells as the novel cell type (80 cells)
- Comparing methods: CHETAH, scmap-cell, scmap-cluster, scPred, coypKAT (if cancer cells are involved)

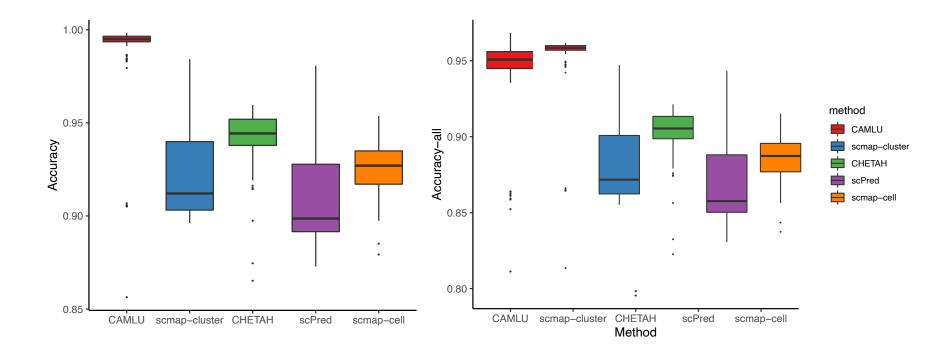
Numerical study with PBMC data



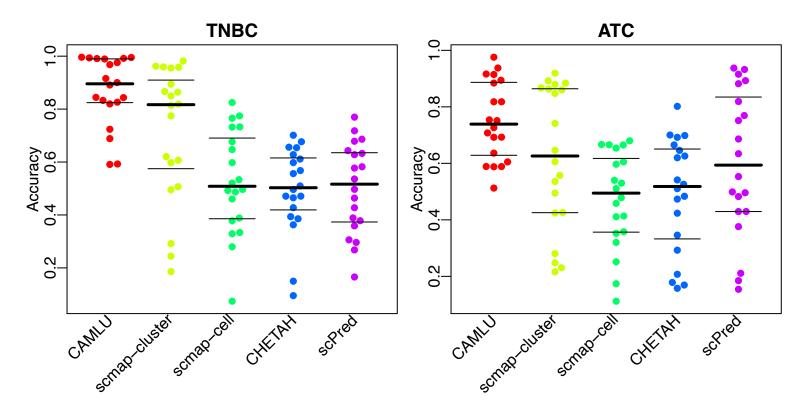
Numerical experiments with PBMC and cancer cell line data

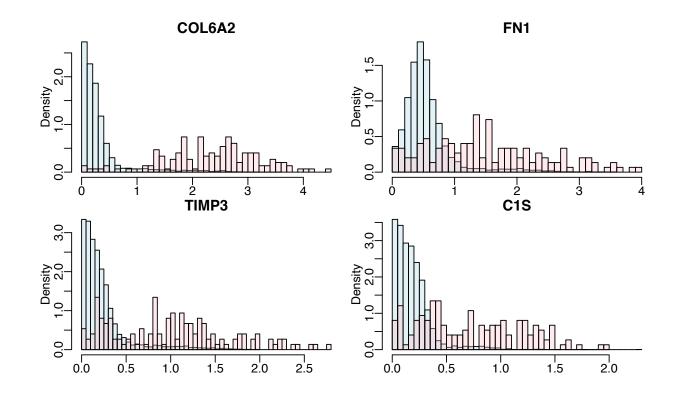


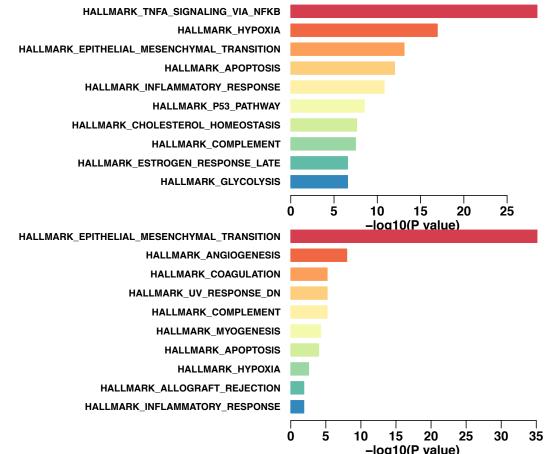
Numerical study with Pancreas data



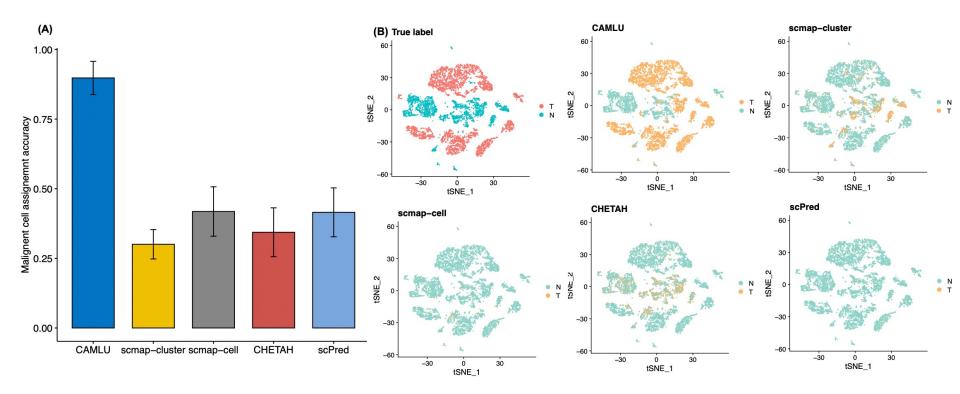
- scRNA-seq data with five triple-negative breast cancer (TNBC) patients
- scRNA-seq data with five anaplastic thyroid cancer (ATC) patients
- Both from Gao et al. (2021) and GSE148673
- Outside reference data for TNBC experiment: a scRNA-seq study with 26 primary tumors of three major breast cancer subtypes. The data from 10 TNBC patients were obtained as the reference.
- Wu et al. (2021) and GSE176078







Analysis of TNBC data with external reference data



Unsolved challenges

- The proposed method may not work well when the novel cells are very similar to the known cells
- It is unclear if the method still works well if significant batch/subject effect exist in the data
- Will incorporating multiple reference panels improve classification accuracy?

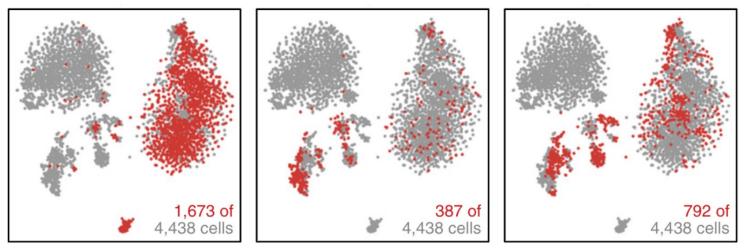
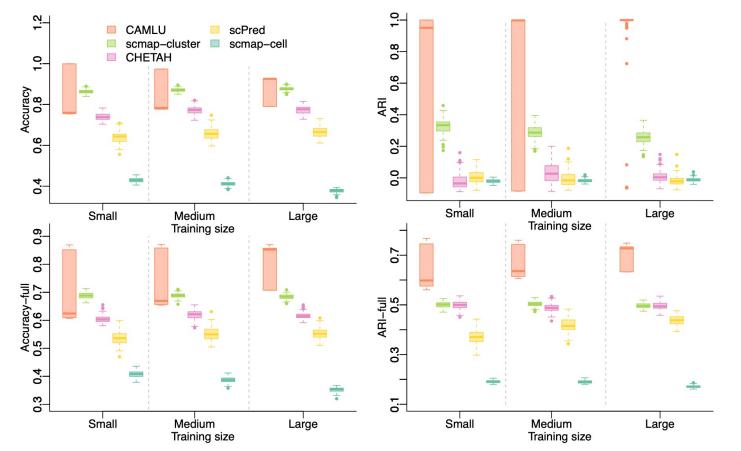


Figure source: van Galen, Peter, et al. "Single-cell RNA-seq reveals AML hierarchies relevant to disease progression and immunity." Cell 176.6 (2019): 1265-1281.

Unsolved challenges



Ongoing/future works

- Better identify neoplastic cells in certain cancer types by incorporating additional biological knowledge
- Including domain specific markers or pathway information to improve novel cell identification
- Explore this direction in larger population scale studies

https://ziyili20.github.io

Thank you!